Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
We propose and study a data-driven method that can interpolate between a classical and a modern approach to classification for a class of linear models. The class is the convex combinations of an average of the source task classifiers and a classifier trained on the limited data available for the target task. We derive the expected loss of an element in the class with respect to the target distribution for a specific generative model, propose a computable approximation of the loss, and demonstrate that the element of the proposed class that minimizes the approximated risk is able to exploit a natural bias–variance trade-off in task space in both simulated and real-data settings. We conclude by discussing further applications, limitations, and potential future research directions.more » « less
An official website of the United States government
